The determinants of South Korean outward FDI in Russia: a partial least square (PLS) analysis
نویسندگان
چکیده
منابع مشابه
Partial Least Square Regression PLS-Regression
PLS regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. Its goal is to predict or analyze a set of dependent variables from a set of independent variables or predictors. This prediction is achieved by extracting from the predictors a set of orthogonal factors called latent variables which have the best predictive pow...
متن کاملToward Optimal Churn Management: A Partial Least Square (PLS) Model
In a very competitive mobile telecommunication industry business environment, marketing managers need a business intelligence model that allows them to maintain an optimal (at least a near optimal) level of churners very effectively and efficiently while minimizing the costs throughout their marketing programs. As a first step toward optimal churn management program for marketing managers, this...
متن کاملa swot analysis of the english program of a bilingual school in iran
با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...
15 صفحه اولPartial Least Squares Regression (PLS)
Number of latents The same number of factors will be extracted for PLS responses as for PLS factors. The researcher must specify how many latents to extract (in SPSS the default is 5). There is no one criterion for deciding how many latents to employ. Common alternatives are: 1. Cross-validating the model with increasing numbers of factors, then choosing the number with minimum prediction error...
متن کاملPartial Least Squares (PLS) Regression
Pls regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. It is particularly useful when we need to predict a set of dependent variables from a (very) large set of independent variables (i.e., predictors). It originated in the social sciences (specifically economy, Herman Wold 1966) but became popular first in chemomet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SHS Web of Conferences
سال: 2020
ISSN: 2261-2424
DOI: 10.1051/shsconf/20208001001